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Thermo-Mechanical Finite Element Simulation 
and Fatigue Life Assessment of a Copper Mould 

This work describes the thermo-mechanical analysis of a copper mould for continuous steel casting. During the continuous casting process, the molten steel passes 
through a water cooled mould. The inner part of the component is subjected to a huge thermal flux. Consequently large temperature gradients occur across the mould, 
especially in the region near to the meniscus. As a result, considerable stresses and plastic strains are induced, which leads to deformations and thermal cracks at the 
inner surface. In order to assess the fatigue life of the copper mould, a three-dimensional finite element model is analyzed in dependence with different material 
models (combined nonlinear kinematic and nonlinear isotropic, linear kinematic, stabilized and accelerated material models). Material coefficients for adopted material 
models and fatigue curves are estimated from isothermal low cycle experimental fatigue data at different temperature levels (20 oC, 250 oC and 300 oC). The fatigue life 
is also assessed depending on different material models.  

• Lemaitre J., Chaboche J.L., Mechanics of solid materials, Cambridge University 
press, 2009 

• Chaboche J.L., Time-independent constitutive theories for cyclic plasticity,Int. J. 
Plasticity, 2(2), 149-188, 1986 

• Chen W.F.,Han D.J., Plasticity for Structural Engineers, Springer-Verlag, New 
York,1988 
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Calibration of material models 
Low cycle fatigue tests  are performed for CuAg material at 20oC, 250oC and 300oC 
and at different strain amplitudes, εa. 
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The molten steel flows from the upper part of the mould to the bottom part where 
the steel exits with a thin solidified shell. During the solidification of the steel, a 
huge thermal flux, q, passes from the molten steel to the inner surface of the 
mould, which is then subjected to high temperatures. The thermal flux varies 
according to a loading condition called macro cycle. Macro cycle is when the plant is 
switched on and the thermal flux increases until reaching the maximum value qmax, 
while thermal flux is absent once the plant is switched off.  

Temperature and von Mises stress distribution at qmax 
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Combined Model
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Stabilized Model
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Linear Model
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Accelerated Model

Evolution of hoop stress-strain for the critical point A in relation with different 
material models: 
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Data from 6 Test
Curve-Fit Parameters - 1 pair

1) Parameters identification for nonlinear kinematic  model 
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Experimental vs. simulated stress-strain loops 
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